Login

AI & ML дайджест #11: фреймворки для ML Model Management, обучение модели в TensorFlow

Приветствую всех! Недавно я запустил Telegram-канал дайджеста, в котором ежедневно стараюсь публиковать ссылки на интересные материалы, связанные с AI & ML. Приглашаю всех присоединяться к нему. А пока предлагаю свежую подборку материалов.

Статьи

Для чего и как мы скрываем госномера автомобилей в объявлениях Авито.

Tutorial: Poisson Regression in R — руководство о регрессии Пуассона, что это такое и как программисты R могут использовать ее в реальных приложениях.

Jupyter Lab: Evolution of the Jupyter Notebook — обзор JupyterLab, следующего поколения ноутбуков Jupyter.

How to Version Control Jupyter Notebooks — обзор различных способов управления версиями Jupyter Notebooks, включая встроенные решения и внешние инструменты.

Structural Time Series Modeling in TensorFlow Probability — о tfp.sts, новой библиотеке в TensorFlow Probability для прогнозирования временных рядов с использованием структурных моделей временных рядов.

Hands-on TensorFlow Tutorial: Train ResNet-50 from Scratch Using the ImageNet Dataset — практическое руководство по обучению модели ResNet в TensorFlow. От запуска TensorFlow, загрузки и подготовки ImageNet, вплоть до документирования и подготовки отчетов.

How to Choose the Right Chart Type — инфографика, которая показывает возможные типы диаграмм, которые вы можете использовать в зависимости от имеющихся у вас данных.

GANSynth: Making music with GANs — введение в GANSynth, методе генерации высококачественного звука с помощью Generative Adversarial Networks (GAN).

Computer Vision Tutorial: A Step-by-Step Introduction to Image Segmentation Techniques — пошаговое руководство введения в сегментацию изображений.

Frameworks for Machine Learning Model Management — сравнение трех популярных инструментов для управления жизненным циклом моделей/проектов машинного обучения: MLFlow, DVC и Sacred.

Проект

Pandaral·lel — простой и эффективный инструмент для распараллеливания ваших Pandas операций на всех доступных процессорах.

Datasets

Mathematics Dataset

130 Terabytes of Oil and Gas Data

Книги

Dive into Deep Learning — интерактивная книга глубокого обучения с кодом, математикой и захватывающими дискуссиями.

15 лучших книг по глубинному обучению.

Видео

Scaled Machine Learning Conference 2019.

Мероприятия

Eastern European Conference on Computer Vision — 6-7 июля, Одесса.

Lviv Data Science Summer School — 22 июля — 2 августа, Львов. Регистрация открыта до 1 мая. В программе школы уже заявлено 12 курсов по направлениям: Computer Vision, Natural Language Processing, Healthcare, Social Network Analysis, Urban Data Science и другим.


Спасибо, что дочитали этот выпуск. Надеюсь, каждый нашел для себя полезное. Буду благодарен за любые предложения для следующего дайджеста.


← Предыдущий выпуск: AI & ML дайджест #10

Похожие статьи:
В базе данных бенчмарка AnTuTu появились данные о смартфоне Meizu MX6, который станет следующим флагманом компании. Там указано, что устройство...
The supposedly big hurdle for hackers when accessing accounts such as email, Facebook, online banking and so on is the password. However, the password for digital burglars seems to be no big deal anymore. Passwords can be spied out via so-called...
У грудні у профілі компанії Rocque на DOU з’явилось декілька відгуків від колишніх співробітників про невиплату їм грошей після...
У березні Верховна Рада зареєструвала законопроєкт, що визнає «платформи спільного доступу до інформації» як окремі...
Нещодавно ми розповідали про основні нововведення закону про мобілізацію, який набере чинності 18 травня. Зокрема,...
Switch to Desktop Version